Randomized Singular Value Projection
نویسندگان
چکیده
Affine rank minimization algorithms typically rely on calculating the gradient of a data error followed by a singular value decomposition at every iteration. Because these two steps are expensive, heuristic approximations are often used to reduce computational burden. To this end, we propose a recovery scheme that merges the two steps with randomized approximations, and as a result, operates on space proportional to the degrees of freedom in the problem. We theoretically establish the estimation guarantees of the algorithm as a function of approximation tolerance. While the theoretical approximation requirements are overly pessimistic, we demonstrate that in practice the algorithm performs well on the quantum tomography recovery problem.
منابع مشابه
Randomized Low-Memory Singular Value Projection
Affine rank minimization algorithms typically rely on calculating the gradient of a data error followed by a singular value decomposition at every iteration. Because these two steps are expensive, heuristic approximations are often used to reduce computational burden. To this end, we propose a recovery scheme that merges the two steps with randomized approximations, and as a result, operates on...
متن کاملComputational time-reversal imaging with a small number of random and noisy measurements
Computational time reversal imaging can be used to locate the position of multiple scatterers in a known background medium. The current methods for computational time reversal imaging are based on the null subspace projection operator, obtained through the singular value decomposition of the frequency response matrix. Here, we discuss the image recovery problem from a small number of random and...
متن کاملStochastic Algorithms in Linear Algebra - beyond the Markov Chains and von Neumann - Ulam Scheme
Sparsified Randomization Monte Carlo (SRMC) algorithms for solving systems of linear algebraic equations introduced in our previous paper [34] are discussed here in a broader context. In particular, I present new randomized solvers for large systems of linear equations, randomized singular value (SVD) decomposition for large matrices and their use for solving inverse problems, and stochastic si...
متن کاملSVD Factorization for Tall-and-Fat Matrices on Map/Reduce Architectures
We demonstrate an implementation for an approximate rank-k SVD factorization, combiningwell-known randomized projection techniques with previously implemented map/reduce solutions in order to compute steps of the random projection based SVD procedure, such QR and SVD. We structure the problem in a way that it reduces to Cholesky and SVD factorizations on k× k matrices computed on a single machi...
متن کاملExperimental Analysis on Character Recognition using Singular Value Decomposition and Random Projection
Character recognition, a specific problem in the area of pattern recognition is a sub-process in most of the Optical Character Recognition (OCR) systems. Singular Value Decomposition (SVD) is one of the promising and efficient dimensionality reduction methods, which is already applied and proved in the area of character recognition. Random Projection (RP) is a recently evolved dimension reducti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013